Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Martin U. Schmidt,^a Torsten Schmiermund^b and Michael Bolte^a*

^aInstitut für Anorganische und Analytische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and ^bClariant Produkte (Deutschland) GmbH, Pigments and Additives Division, G834, 65926 Frankfurt am Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.047 wR factor = 0.124 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Anilic acid dimethylformamide disolvate

Anilic acid [or 2,5-bis(phenylamino)terephthalic acid], $C_{20}H_{16}N_2O_4$, is an intermediate in the industrial synthesis of quinacridone pigments. Single crystals were grown from dimethylformamide (DMF), yielding a solvate with two molecules of DMF, $C_{20}H_{16}N_2O_4 \cdot 2C_3H_7NO$. There are two half-molecules of anilic acid in the asymmetric unit; each molecule is located on a centre of inversion and forms hydrogen bonds to two dimethylformamide molecules.

Comment

The most important pigment for red-violet shades is quinacridone (VII), which is worldwide registered as 'C. I. Pigment Violet 19' (Herbst & Hunger, 2004). It is used for automotive finishes, powder coatings, paints, plastics and high-grade printing inks. The most common industrial synthetic route is shown in the reaction scheme.

© 2007 International Union of Crystallography All rights reserved The structure of the intermediate disodium aniloate (I) as the decahydrate has recently been published (Schmidt *et al.*,

Received 22 November 2006 Accepted 24 November 2006

Figure 1

The structures of the two independent molecules together with their hydrogen-bonded solvent molecules. Atoms with the suffix B were generated by the symmetry operator (-x, -y, 1 - z), while those with the suffix C were generated by the symmetry operator (-x, 1 - y, 2 - z).

2006). The corresponding acid, or 2,5-bis(phenylamino)terephthalic acid, is industrially called 'anilic acid'; it is produced in an amount of several thousand tons per year. One of the largest producers is Clariant. We report here the crystal structure of a dimethylformamide (DMF) solvate of this acid, (VI)·2DMF. For the crystallization, we used industrial anilic acid from the Clariant quinacridone plant in Frankfurt-Höchst (see below).

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 5.27, November 2005 plus three updates; MOGUL Version 1.1; Allen, 2002). Each molecule of anilic acid is located on a centre of inversion. The dihedral angles between the central benzene ring and phenyl rings are 47.95 (5) and 59.09 (6) $^{\circ}$. The carboxyl groups are twisted out of the central benzene plane by 17.12 (13) and 11.1 (2) $^{\circ}$. The carboxyl groups form hydrogen bonds to DMF molecules (Table 1). The assemblies of one anilic acid and two DMF molecules are packed by van der Waals interactions.

Experimental

Anilic acid (10 g) was stirred with DMF (200 ml) for 2 h. The resulting solution was filtered over a 20 µm filter to remove all particles. The solution was kept in a open 200 ml Erlenmeyer flask at room temperature for several weeks allowing the anilic acid to crystallize slowly. Bright-orange crystals of anilic acid DMF solvate with a diameter of 1-2 mm were formed. The crystals were separated by filtration, washed with DMF and dried in a nitrogen flow.

Crystal data

γ

$C_{20}H_{16}N_2O_4 \cdot 2C_3H_7NO$	$V = 1301.92 (19) \text{ Å}^3$
$M_r = 494.54$	Z = 2
Triclinic, P1	$D_x = 1.262 \text{ Mg m}^{-3}$
a = 8.9875 (8) Å	Mo $K\alpha$ radiation
b = 10.0220 (8) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.2076 (12) Å	T = 173 (2) K
$\alpha = 83.088 \ (6)^{\circ}$	Block, orange
$\beta = 74.144 \ (6)^{\circ}$	$0.44 \times 0.42 \times 0.39 \text{ mm}$
$\nu = 82.788 \ (6)^{\circ}$	

4849 independent reflections

 $R_{\rm int} = 0.062$

 $\theta_{\rm max} = 25.6^{\circ}$

+ 0.4015P] where $P = (F_0^2 + 2F_c^2)/3$

4385 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: none 16656 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0695P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.124$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.04 $\Delta \rho_{\rm max} = 0.54 \text{ e} \text{ Å}^{-3}$ 4849 reflections $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$ 345 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2···O21	0.93 (3)	1.60 (3)	2.5268 (14)	174 (3)
C22-H22···O1	0.95	2.59	3.2524 (18)	127
$N1 - H1 \cdots O2$	0.902 (19)	2.006 (18)	2.6805 (15)	130.5 (16)
$O2A - H2A \cdots O21A$	0.95 (3)	1.60 (3)	2.5432 (14)	173 (2)
$C22A - H22A \cdots O2A$	0.95	3.14	3.2750 (17)	90
$N1A - H1A \cdots O1A$	0.889 (19)	1.984 (19)	2.7049 (15)	137.2 (16)
$C4-H4\cdots O1^{i}$	0.95	2.44	2.7856 (16)	101
$C4A - H4A \cdots O2A^{ii}$	0.95	2.35	2.7003 (16)	102
$C14-H14\cdots O2A^{iii}$	0.95	2.52	3.3574 (18)	146
$C14A - H14A \cdots O1^{iv}$	0.95	2.58	3.469 (2)	157
$C24 - H24A \cdots O21$	0.98	2.34	2.7517 (19)	105
$C24A - H24D \cdots O21A$	0.98	2.36	2.7824 (17)	105

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) x + 1, y - 1, z - 1; (iv) x + 1, y, z.

H atoms were located in a difference map, but those bonded to carbon were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(methyl C)]$, using a riding model, with C-H = 0.95 and 0.98 Å for Csp^2 and methyl groups, respectively. The methyl groups were allowed to rotate but not to tip. H atoms bonded to N and O atoms were freely refined.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in

SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

The authors thank D. Schnaitmann and W. Schwab for cooperation and Clariant for financial support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, 3rd ed. Weinheim: Wiley–VCH.
- Schmidt, M. U., Schmiermund, T. & Bolte, M. (2006). Acta Cryst. C62, m37– m40.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.